Assimilating Nonlocal Observations using a Local Ensemble Kalman Filter
نویسندگان
چکیده
Many ensemble Kalman filter data assimilation schemes benefit from spatial localization, often in both the horizontal and vertical coordinates. On the other hand, satellite observations are often sensitive to the dynamics over a broad layer of the atmosphere; that is, the observation operator that maps the model state to the observed satellite radiances is a nonlocal function of the state. Similarly, errors in satellite retrieval observations can be correlated over significant distances. This nonlocality can present problems for assimilating satellite observations with local ensemble Kalman filter schemes. In this paper, we propose a technique in which the observation operator is applied to the global model state and then appropriate observations are selected to estimate the atmospheric state for each model grid point. The issue of how to choose appropriate observations is investigated with numerical experiments on a seven layer primitive equation model, the SPEEDY model. We assimilate both simulated point observations and either nonlocal radiance-like or retrieval-like observations with a particular ensemble Kalman filter, LETKF. The best analysis results are obtained from a scheme that updates the state at a given location by assimilating all those observations that are strongly correlated to the model state near that location. ? Corresponding author. email:[email protected]
منابع مشابه
Local Ensemble Transform Kalman Filter: An Efficient Scheme for Assimilating Atmospheric Data
We present an efficient variation of the Local Ensemble Kalman Filter (Ott et al. 2002, 2004) and the results of perfect model tests with the Lorenz-96 model. This scheme is locally analogous to performing the Ensemble Transform Kalman Filter (Bishop et al. 2001). We also include a four-dimensional extension of the scheme to allow for asynchronous observations.
متن کاملAssimilating non-local observations with a local ensemble Kalman filter
Many ensemble data assimilation schemes utilize spatial localization so that a small ensemble can capture the unstable degrees of freedom in the model state. These local ensemble-based schemes typically allow the analysis at a given location to depend only on observations near that location. Meanwhile, the location of satellite observations cannot be pinpointed in the same manner as conventiona...
متن کاملAssimilating Satellite Observations with a Local Ensemble Kalman Filter
Title of dissertation: ASSIMILATING SATELLITE OBSERVATIONS WITH A LOCAL ENSEMBLE KALMAN FILTER Elana Judith Fertig Doctor of Philosophy, 2007 Dissertation directed by: Professor Brian R. Hunt Department of Mathematics Numerical weather prediction relies on data assimilation to estimate the current state of the atmosphere. Generally speaking, data assimilation methods combine information from ob...
متن کاملOcean current estimation using a Multi-Model Ensemble Kalman Filter during the Grand Lagrangian Deployment experiment (GLAD)
In the summer and fall of 2012, during the GLAD experiment in the Gulf of Mexico, the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE) used several ocean models to assist the deployment of more than 300 surface drifters. The Navy Coastal Ocean Model (NCOM) at 1 km and 3 km resolutions, the US Navy operational NCOM at 3 km resolution (AMSEAS), and two vers...
متن کاملP3.4 the Local Ensemble Kalman Filter of the University of Maryland
The time has come when ensemble-based Kalman filter data assimilation schemes can be considered for implementation on operational weather forecast systems in the foreseeable future. For the first time, an ensemble Kalman filter has been reported to break even with a sophisticated operational 3DVar system (Houtekamer et al 2004), to outperform the NCEP 3D-Var in reconstructing the state of the m...
متن کامل